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HIERARCHICAL DICTIONARY LEARNING FOR INVARIANT CLASSIFICATION

Leah Bar and Guillermo Sapiro

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA

ABSTRACT

Sparse representation theory has been increasingly used in the fields
of signal processing and machine learning. The standard sparse
models are not invariant to spatial transformations such as image
rotations, and the representation is very sensitive even under small
such distortions. Most studies addressing this problem proposed al-
gorithms which either use transformed data as part of the training
set, or are invariant or robust only under minor transformations. In
this paper we suggest a framework which extracts invariant sparse
features under significant rotations and scalings. The algorithm is
based on a hierarchical architecture of dictionary learning for sparse
coding in a cortical (log-polar) space. The proposed model is tested
in supervised classification applications and proved to be robust un-
der transformed data sets.

Index Terms— Sparse models, dictionary learning, hierarchy,
log-polar, invariance, classification

1. INTRODUCTION

Sparse signal models over learned dictionaries were proved to be
very powerful in recent years in the fields of image processing,
speech processing, and machine learning. Sparse representations
have the advantage of capturing inherent structures of the signal and
demonstrate relative robustness to (additive) noise. In their standard
form, these compact representations are not invariant under trans-
formations such as translation, scaling and rotation. Kavukcuoglu
et al. [1] learn locally-invariant feature descriptors by pooling the
sparse coefficients across overlapping windows. Yet, their algorithm
is designed for relatively small distortions. Shift-invariant dictionary
learning was investigated by [2, 3]. The idea in both papers is to
train the dictionaries on many possible shifted versions of the signal
(see also [4] for related ideas extending the popular SIFT descriptor
to the affine case). This approach may render to be computational
expensive, and in addition, several transformations may lead to im-
practical implementation. Huang et al. [5] simultaneously recover
the sparse representation of the target image and the geometrical
(translation/affine) transformation between the target and model im-
ages. The transformations are approximated by first order Taylor
expansion and therefore have again the limitation of being relatively
small.

Invariance can be approached by biologically-inspired architec-
tures. Typically, the extraction of local features is followed by spatial
pooling which is classically modeled as a hierarchy of increasingly
complex structures. These ideas led to extensive research and algo-
rithms. Serre et al. [6], for example, suggested a scale and position
tolerant feature detector based on the alternation between template
matching and a maximum pooling operator. Ranzato et al. [7] sug-
gested a hierarchical feature extraction algorithm which is invariant
under small shifts and distortions.

In this paper we introduce a framework for dictionary learning

and sparse feature extraction, which is invariant under significant or-
dinary rotation and scaling transformations. In the proposed method,
we integrate the ideas of sparse representation theory and hierarchi-
cal structures. By using a special conformal (log-polar) mapping of
the data, rotated and scaled patterns are converted into shifted pat-
terns in the new space on which we operate for learning the dictio-
nary and adding hierarchy. Our approach is closely related to [8],
where log-polar images were represented by invariant wavelet pack-
ets. Yet, in our work we incorporate a hierarchical architecture that
is designed to also eliminate the effects of translations in this space.
As we show later, a hierarchical approach performs better than a
one-layered one. Moreover, we learn dictionaries instead of using
pre-defined wavelets, following the recent results in the literature
clearly showing that such learned dictionaries often outperform off-
the-shelf ones.

The suggested approach is general and suited for data of very
different nature. The method was particularly tested with two appli-
cations: in the first example, we classified handwritten digits with
only aligned training patterns and transformed tested patterns with
significant rotations and scalings. Next, classification of texture im-
ages with large variability of scaling and rotations was performed.
Promising results support the stability and robustness of the sug-
gested approach.

2. BACKGROUND AND NOTATIONS

In sparse modeling representation, a signal x ∈ Rn is represented
as a linear combination of basis column vectors dj ∈ Rn (atoms)
which form a dictionary D ∈ Rn×K , such that x = Dα. The vec-
tor α ∈ RK is assumed to be sparse, meaning that the number of
non-zero elements is much smaller than K. A dictionary can be
overcomplete, K À n, as is often used in restoration algorithms.
Most classification algorithms on the other hand, use undercomplete
(K < n) dictionaries. Given a dictionary D and a signal x, the `1
sparse coding problem is given by

α̂ = arg min
α
‖x− Dα‖2 + λ‖α‖1, (1)

where λ ∈ R is a regularization constant. This formulation and its
variants are referred to as basis pursuit or Lasso [9]. The optimiza-
tion in this work was carried out using the Lars [10] algorithm which
we denote as (α) ← Lars(x, D).

Consider a set of m signals X = [x1, . . . , xm] ∈ Rn×m. The
dictionary D and coefficients set α = [α1, . . . , αm] ∈ RK×m are
given by

D̂, α̂ = arg min
D,α

m∑
i=1

‖xi − Dαi‖2 + λ‖αi‖1. (2)

The optimization is performed by alternate minimization w.r.t. α
and D. We denote the dictionary learning process as (D, α) ←
TrainDictionary(X). Detailed description of both algorithms can
be found for example in [11].



3. CLASSIFICATION VIA SPARSE CODING

Let Xtrain be a labeled training set, and Xtest the unlabeled testing
set. Our goal is to learn a classifier which is robust under a group
of transformations, present in Xtest but not necessarily present in
Xtrain. We begin by presenting a simple classification algorithm
based on a sparse reconstructive model, and continue with introduc-
ing the invariant hierarchy-based approach.

The procedure which we refer to as STL, follows for example
the Self-taught Learning via Sparse Coding algorithm [12] (see also
[13]). The idea is to learn a dictionary from an unlabeled dataset.
Then the sparse coding coefficients obtained when coding elements
of the labeled dataset serve as features which are fed into an SVM
classifier.1 In our implementation, the dictionary was trained with
the aligned labeled data. New data is then classified with the learned
dictionary and SVM.

Algorithm STL
1. (D, α) ← TrainDictionary(Xtrain)

2. Learn a classifier C by a linear SVM based on α.

3. (β) ← Lars(Xtest, D)

4. Classify the set β by C.

This algorithm is very effective in the case that the training and test-
ing sets are aligned. Even though there are state-of-the-art algorithm
which have preferable performance, e.g., [13], they are based on
discriminative dictionary learning models in the sense of a modified
version of Equation (2). In our approach on the other hand, we use
a simpler reconstructive one which is based on (2). Extending the
framework here presented to such discriminative models is part of
our ongoing efforts.

4. HIERARCHICAL DICTIONARY LEARNING

Two main approaches are widely used to deal with invariant features
in frameworks as the one here proposed. One strategy is to train the
system with as many transformed pattern as possible. Alternatively,
invariant features with much smaller training sets can be extracted.
In the proposed method, we follow this second approach, and the
invariant characteristics are implicitly captured. Input images are
first transformed by a conformal mapping such that rotations and/or
scaling are reduced to horizontal and/or vertical translations. Dictio-
naries are then trained with this data in a hierarchical fashion: The
outcome associated with grouped sub blocks from one layer serve
as the input to a new layer of learned dictionaries. Finally, trans-
lation invariance is accomplished by a further special hierarchical
transform.

4.1. Log-Polar Mapping

Images can be represented in different spaces. Fischer [14] origi-
nally suggested that the transformation of the visual field into its neu-
ral representation is approximated by a complex logarithmic map-
ping W = log(Z), where Z = a + ib (a and b are the spatial
coordinates in the image domain) and W = ξ + iη are complex
numbers that define the retinal and cortical spaces respectively. The
mapping is given by: ξ = log(a2 + b2) and η = tan−1(b/a). This
is the map used to transform the image data.

1LIBSVM package: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

Fig. 1. Left: Rotations in the retinal space (top) are converted into
cyclic shifts in the cortical space (bottom). Right: Scalings in the
retinal space (top) are converted into shifts along the vertical axis in
the cortical space (bottom).

Clearly, rotations are converted into cyclic translation along the
η axis, while scalings are converted into translation along the ξ axis,
Fig. 1.

4.2. Rapid Transform

We now briefly describe a non-linear hierarchical transformation
which is invariant under cyclic permutation. It will be used later as
we describe the proposed algorithm. The Rapid transform, presented
in the frame below, was suggested by Reitboeck and Brody [15],
and was widely used in pattern recognition algorithms, e.g., [16].
Let U be a vector of M = 2n elements. Then, the output vector
V ←Rapid(U) is invariant under cyclic translations (the proof can
be found in [15]).

V ←Rapid(U)

1. Let U(i) elements of a vector, i = 1, . . . , M , M = 2n,
V0 = U.

2. for s = 1 to n

3. Vs(2i− 1) = Vs−1(i) + Vs−1(i + M/2)

4. Vs(2i) =
∣∣Vs−1(i)− Vs−1(i + M/2)

∣∣.

4.3. Hierarchical Invariant Algorithm (HIA)

Based on the previous sections, we describe now the proposed al-
gorithm. Let Itrain[k] ∈ Rh′×w′ , k = 1, . . . , N train, be a set of
training images, and Ltrain[k] ∈ Rh×w the corresponding log-polar
mapping. The dimension of the original image is not necessarily
identical to the dimension of the log-polar one, since angular/radial
resolution in the cortical space may be controlled. In the case of
shapes images (like digits), the origin of the polar coordinate sys-
tem is determined by the center of mass of the shape, otherwise the
origin is the center of the image. Every log-polar image Ltrain[k] is
divided into Hp×Wp overlapping patches xi ∈ R

√
n×√n (shown in

Fig. 2). Let us now concatenate the whole patches from all training
images to Xtrain = [. . . , xi[k], . . .] ∈ Rn×HpWpNtrain

.
The first layer dictionary D1 of size K1 is now calculated based

on the training set Xtrain. The dictionary learning procedure yields
also the training coefficients set α1 ∈ RK1×HpWpNtrain

corre-
sponding to the sparse code. We are now ready for the second layer
of the hierarchy. Motivated by capturing the most representative
structures of the data, each patch is now replaced by its most promi-
nent atom dl, e.g., the atom which has the maximum α.

Let us now group some of such atoms to a unit ys,r which forms
a sub-column. A full column accommodates Hc sub-columns, and
there are total of Wp×Hc overlapping sub-columns per image (shad-
owed blocks in Fig. 2). Once again, we concatenate the whole sub-



Fig. 2. Hierarchical structure of blocks. The white
√

n×√n patches
are used in the first layer of the hierarchy, while the shadowed sub-
columns are used in the second one.

columns from the training images to Ytrain = [. . . , ys,r[k], . . .],
s = 1, . . . , Hc, r = 1, . . . , Wp, k = 1, . . . , N train. The dictionary
D2 of size K2 and coefficients set α2 are now calculated based on
Ytrain.

In the next two steps we obtain the desired invariance properties.
From now on, we process every image k separately. Let αs,r

2 be the
coefficients vector associated with sub-column ys,r:

αHc,1
2

...

α2,1
2

α1,1
2 α1,2

2
. . . α

1,Wp

2

. . . α
Hc,Wp

2

...

α1
2 α2

2
. . . α

Wp

2

Scale invariance is accomplished by summing the coefficients over
a column, such that αr

2 =
∑Hc

s=1 αs,r
2 (shadowed row). Clearly, the

sum of the coefficients is invariant under their permutations, and the
vertical translations (due to scalings) are canceled.

Every image k is now represented by Wp vectors. These arrays
are now fed into the Rapid transform, where every element U(r) is
represented by αr

2. The outcome of the rapid transform is denoted
by α̃r . As was explained in Section 4.2, the transformed vector is
invariant under cyclic translations, and the coefficients α̃r are there-
fore rotation invariant.

The last step is learning the SVM classifier C. One option is to
train WpN train sets of α̃r ∈ RK2 . The other option is to group all
the coefficients associated to image k, meaning that we train N train

sets of [(α̃1)T , . . . , (α̃Wp)T ] ∈ RK2Wp . The whole learning algo-
rithm is summarized in the HIA algorithm frame.

Given a new testing data set, invariant features β̃r are calculated
by the above procedure using the learned D1 and D2. Classification
is then based on grouped/non grouped β̃r and SVM.

The IA algorithm (see frame below) was designed to evaluate the
significance of the hierarchical approach. The algorithm is similar to
HIA except that the second dictionary learning stage is omitted. Ex-
perimental results support the superiority of the hierarchical model.

5. EXPERIMENTAL RESULTS

The proposed algorithms were tested with two different databases:
handwritten digits and textures from multiple view points. In both
algorithms we used undercomplete dictionaries which are known to
be effective in classification tasks. For fair comparisons, dictionary
sizes were manually optimized. All the experiments reported in
this section share the same dictionary sizes. For the STL algorithm,
K = 64. For both hierarchical levels in the suggested algorithm, the
dictionary sizes were K1 = 256 and K2 = 256.

Algorithm HIA

1. (D1, α1) ← TrainDictionary(Xtrain)

2. xtrain
i ← dΛi , where Λi = arg maxl α1,i(l).

3. Group atoms to sub-columns ys,r .

4. Ytrain = [y1,1[1], . . . , ys,r[N
train]]

5. (D2, α2) ← TrainDictionary(Ytrain).

6. For each image k

7. Sum over columns: αr
2 =

∑
s αs,r

2 .

8. α̃r ← Rapid (αr
2).

9. end

10. Learn a classifier C based on (non-grouped) α̃r , or grouped
set per image {α̃r}.

Algorithm IA The same as HIA. Skip stages 2-5 and substitute
α2 ← α1 in 7,8.

The re-sampled USPS [17] dataset contains 4649 training images
and 4649 testing images of size 16 × 16 which were centered in a
24 × 24 matrix. Following [13], the whole image served as a patch
in the STL implementation. As for the HIA algorithm, the resolution
of the log-polar images was increased to 40 × 40, and patches of
10 × 10 with overlap of 8 pixels were used. The invariant features
were grouped such that the SVM classifier was trained with 4649
vectors.

In the first experiment (Table 1), we trained both systems with
aligned digits and then classified the aligned testing set. As ex-
pected, the STL algorithm performs a little better than the HIA (first
raw). This could be explained by the fact that HIA incorporates
lots of overheads and interpolations during the log-polar mapping.
Next, we trained the dictionaries with random rotated digits in an
angles range of [−50◦, 50◦]. The testing set was randomly rotated
as well. Classification results in this case were very close (second
row), which makes sense due to the fact that STL learns different
angles possibilities. Lastly, we added a scaling effect of ±20% digit
size. Since the parameter K was fixed in all cases, a better result
was obtained for the HIA algorithm (third row). The STL dictio-
nary was not rich enough to accommodate as many combinations of
scales and rotations in the learning set. On the other hand, the HIA
dictionary learned invariant features and therefore performed better.

The next experiment is summarized in Table 2. In this case, dic-
tionaries were learned from aligned digits only, and testing images
were randomly rotated and scaled. Fig. 3 illustrates few samples
from both sets. The superiority of the suggested algorithm is clear
even when compared to IA algorithm. The rotation range was se-
lected such that there would be no confusion between the digits 6
and 9. Experiments which exclude the digit 9 yield classification ac-



Data Set θ [◦] Scale STL HIA
10 digits 0 1 95.8 93.7

±50 1 89.8 88.7
±50 ±0.2 83.8 88.0

Table 1. Classification accuracy for the digits data [%]. Both train-
ing and testing samples are randomly transformed.

Data Set θ [◦] Scale STL HIA IA
10 digits ±50 1 59.1 86.0 76.9

±50 ±0.2 55.6 83.6 73.3
3 Textures - - 76.4 94.7 -
4 Textures - - 75.6 91.2 -

Table 2. Classification accuracy for the digits and texture data [%].
Only testing samples are randomly transformed for the digits (such
transformations are natural in the texture dataset).

curacy of 77.5% (versus 36.4% using STL) with the whole rotation
range of [0◦, 360◦].

In the second example we used a texture database [18] with high
variability of scaling and viewpoints within each class (Fig. 4). The
database contains 40 images of size 480 × 640 for every class. We
used 25 images for training and 15 images for testing. For the STL
algorithm, optimal patches size was 20 × 20 with an overlap of 12
pixels. As for the HIA algorithm, patches of 50× 50 with 42 pixels
overlap were used. Features vectors in this case were not grouped
and every sub-image was classified independently. The results are
presented in the bottom panel of Table 2. Once again, the robust-
ness of the algorithm is verified by the tolerance under significant
geometric transformations.

6. CONCLUSIONS

In this paper, we showed that a hierarchical approach to dictionary
learning, combined with a cortical (log-polar) transform, plays a
significant role in automatic invariant features extraction. The sug-
gested algorithm demonstrated very promising results in the case of
transformed pattern classification. In future work we would like to
study additional transformations, such as affine, and also the intro-
duction of this framework in discriminative dictionary learning [13].
Acknowledgments: The authors would like to thank Julien Mairal
for the dictionary learning and Lars code, and Ignacio Ramirez and
Federico Lecumberry for their extensive help. Prof. Dario Ringach
inspired in part this work by asking questions about hierarchy in
learning. Work partially supported by ONR, NGA, NSF, DARPA,
and ARO.

Fig. 3. Samples from the training set (top) and transformed testing
set (bottom).

Fig. 4. Samples from a textures database. Every row represents a
different class.
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